Alternating Direction Method of Multipliers for Linear Inverse Problems

نویسندگان

  • Yuling Jiao
  • Qinian Jin
  • Xiliang Lu
  • Weijie Wang
چکیده

In this paper we propose an iterative method using alternating direction method of multipliers (ADMM) strategy to solve linear inverse problems in Hilbert spaces with a general convex penalty term. When the data is given exactly, we give a convergence analysis of our ADMM algorithm without assuming the existence of a Lagrange multiplier. In case the data contains noise, we show that our method is a regularization method as long as it is terminated by a suitable stopping rule. Various numerical simulations are performed to test the efficiency of the method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preconditioned alternating direction method of multipliers for inverse problems with constraints

We propose a preconditioned alternating direction method of multipliers (ADMM) to solve linear inverse problems in Hilbert spaces with constraints, where the feature of the sought solution under a linear transformation is captured by a possibly non-smooth convex function. During each iteration step, our method avoids solving large linear systems by choosing a suitable preconditioning operator. ...

متن کامل

Modified Convex Data Clustering Algorithm Based on Alternating Direction Method of Multipliers

Knowing the fact that the main weakness of the most standard methods including k-means and hierarchical data clustering is their sensitivity to initialization and trapping to local minima, this paper proposes a modification of convex data clustering  in which there is no need to  be peculiar about how to select initial values. Due to properly converting the task of optimization to an equivalent...

متن کامل

On the alternating direction method of multipliers for nonnegative inverse eigenvalue problems with partial eigendata

We consider the nonnegative inverse eigenvalue problem with partial eigendata, which aims to find a nonnegative matrix such that it is nearest to a pre-estimated nonnegative matrix and satisfies the prescribed eigendata. In this paper, we propose several iterative schemes based on the alternating direction method of multipliers for solving the nonnegative inverse problem. We also extend our sch...

متن کامل

A Proximal Point Analysis of the Preconditioned Alternating Direction Method of Multipliers

We study preconditioned algorithms of alternating direction method of multipliers type for non-smooth optimization problems. The alternating direction method of multipliers is a popular first-order method for general constrained optimization problems. However, one of its drawbacks is the need to solve implicit subproblems. In various applications, these subproblems are either easily solvable or...

متن کامل

Alternating Direction Methods for Latent Variable Gaussian Graphical Model Selection

Chandrasekaran, Parrilo, and Willsky (2012) proposed a convex optimization problem for graphical model selection in the presence of unobserved variables. This convex optimization problem aims to estimate an inverse covariance matrix that can be decomposed into a sparse matrix minus a low-rank matrix from sample data. Solving this convex optimization problem is very challenging, especially for l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 54  شماره 

صفحات  -

تاریخ انتشار 2016